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SPINNING PARABOLOIDAL TENSION NETWORKS 

By William M. Robbins, Jr. 
Astro Research Corporation 

SUMMARY 

The requirements for forming a spinning paraboloid of revolu- 
tion from perfectly flexible fibers are investigated. It is 
shown that such a surface can be made with two symmetrically 
placed sets of spiral fibers, either with or without a parallel- 
circle set. In either case there is a minimum radius at which 
a given design must be truncated and which, for reasonable surface 
geometry, limits the ratio of outer to inner radius to two or less. 

INTRODUCTION 

Current interest in the design of very large reflectors for 
orbiting radiotelescopes operating at low frequencies has led to 
the investigation of methods whereby the surface density of 
radio reflectors can be made as low as possible. This need for 
lightness, coupled with the requirements for reflectivity, for 
operation in a micrometeroid environment, and for maintaining a 
geometrically precise surface, has led the Astro Research Corpora- 
tion to the investigation of networks of ribbons as radio 
reflectors. 

Methods whereby a reflector, in the form of a paraboloid of 
revolution, can be formed by using a network of flexible fibers 
is the subject of report. The fibers are maintained in tension 
by spinning the paraboloid about its axis of symmetry and by 
supplying an axial tension force by means of a central compressio 
column. 

n 

It is assumed that the network structure is fine enough that 
membrane theory can be applied to the surface. 
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m" 

m' 

NR 

N a 

Ne 

NCP 

N 
CPR 

n 

n' 

'n 

cross-sectional area of fiber 

cross-sectional area of parallel-circle fiber 

cross-sectional area of spiral fiber. 
- 

characteristic parameter for paraboloid formed of two 
families of fibers 

total axial force 

focal distance of paraboloid 

length of fiber element 

total mass on rim 

mass loading per unit of length on rim 

mass per unit surface area 

mass per unit fiber length 

radial force per unit of length as supplied by rim mass 
. 

membrane force supplied by tensioning fibers 

latitudinal membrane force 

meridional membrane force 

value of 
NCP 

at rim 

focal ratio of paraboloid 

number of fibers in each spiral set 

normal force per unit surface area 
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'Ta 
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AcO 
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u 
C 

cp 

n 
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UJ 

centrifugal force per unit surface area 

meridional force per unit surface area 

radius at rim 

radius 

r/f = normalized radius 

spacing between fibers 

spacing between parallel-circle fibers 

tension in fiber 

tension in parallel circle fiber 

tension in spiral fiber 

axial distance coordinate 

angle between tensioning fibers and plane normal to axis 
of symmetry 

angle between fiber and local meridian 

circumferential fiber spacing at point where cosY = 1 

density of fiber 

stress in parallel-circle fiber 

stress in spiral fiber 

meridional angle 

characteristic parameter for paraboloid formed of two 
families of fibers 

spin rate of paraboloid 



TEE GENERAL MEMBRANE FORCES 

Consider a thin shell of revolution, without bending stiff- 
ness, spinning with constant speed W about its axis of 
symmetry. Let the only body force be the centrifugal force p, 

which results from the spin, and which produces the meridional 
and latitudinal membrane forces 

NCP 
and 

Ne l 

The following 

sketch shows the geometry of a meridional cut of the surface, 
where r is the radius of curvature of the meridian. 
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The following relations can be written by inspection. 

r = r .sincp 
2 

'n = pr=sinrp 

pv 
= pr-coscp 

Also 

'r 
= mg1LlJ2r 

where m" is the mass per unit surface area. 

The equations of equilibrium are (see ref. 1, p. 23): 

d(Ncp.r) - 
dcp 

r N .coscp = - 
1 8 

pep-r-r 
1 

!2P+t!Lp 
r r n 

1 2 

These equations can be combined to yield 

w + (NV-r] cotcp = 0 

which has the solution 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

2ITrN 
v 

l sincp = F (9) 



where F is the total axial component of force carried by the 
membrane, and supplied by some external source, such as a 
compression column. Equation (9) can also be written as 

F 
NY = 2Ilr.sinCp 

Rearranging (7) and substituting (l), (2), (5), and 
(10) yields 

Nf3 = ma8W2r2 - +ot'P.cscqJ*~ 

(10) 

(11) 

THE PARABOLOID OF REVOLUTION 

The general shell of revolution will now be restricted to 
a paraboloid of revolution by defining the relationship between 
Z and r such that 

(12) 

where f is the focal distance. For reference, the meridional 
shape of a paraboloid of revolution is shown in figure 1, where 
the t'depthS1 of tkparaboloid can be seen for various values of 
the focal ratio n . 

Let rf = z Then by differentiation 

dz If tancp = dr = T 
i I (13) 

Further manipulation leads to the following three expressions. 

sincP = (14) 
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r 

and 

dep 1 
dr l r*cotrp = 

Equations (10) and (11) can now be written as 

F 
2rrr 

qy 
rf ( 1 2 

Ne = ,t1w2p - -. 2Er (;) im 

(15) 

(16) 

(17) 

(18) 

NETWORK OF TWO FAMILIES OF FIBERS 

Let the paraboloidal surface be formed of two symmetrically 
placed and perfectly flexible sets of spiral fibers connected at 
the intersections and forming diamond-shaped meshes over the 
surface as shown in figure 2. Let the dimensions of the meshes 
be small enough, in comparison with the total dimensions of the 
paraboloidal surface, that the surface can be treated approxi- 
mately as a membrane. The forces on such a mesh are shown in 
the sketch below. 
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. . . 

Meridian 

- Nt3 

where: 

4 = length of fiber element 

s = spacing between fibers 

Y = angle between fiber and local meridian 

T = tension in fiber 

By inspection it follows that 

Ncp*t-sinY = TocosY 

Neo$-cosy = T-sinY 

8 
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44 nr = 
n'*sinY 

2Trr 
S = -*cosy 

n' 

(21) 

(22) 

where n' is the number of fibers in each. spiral set. 

From (19) and (20) 

Ne 

% 

= tarPY (23) 

which indicates that, because of the in-plane shear compliance 
of the two-fiber network, there must be a specific relationship 
between Ne and NCP for each value of Y . 

For such a network of two symmetrically placed families of 
fibers, the mass per unit of surface area is given by 

m" =2m’= 2pA 
S S 

where: 

m" = mass per unit of surface area 

m' = mass per unit of fiber length 

P = density of fiber 

A = cross-sectional area of fiber 

When (22) is substituted into (24): 

m" = ' An' 
rrr*cosY 

(24) 

(25) 

When (17), (18) and (25) are substituted into (23), an equation 
in cosY is obtained. 



where 

‘) .~~~,,,, .- 

C 
= 4pAn'w"f2 

F 

1 i "f 
a 

l+ 2 

1 1 
rf 

2 

2 

= 0 (26) 

Let cosy 
I I rf =l be the value of COSY when rf = 1 . 

Then (26) can be solved for C at r 
f = 1 which leads to 

C = 

and C vs. cosy 
I I rf =l 

is shown in figure 3. 

Solving (26) for COSY yields 

cosy = Irf (2.2 

(27) 

(28) 

1 

1 
1 

(29) 

In figure 4, Y as a function of rf is shown for various 

values of 
cosy( rf=l\ l 

It should be noted that there is 

always a minimum possible value of rf for each value of 

cosy[rf=l) and it occurs when Y = 0 , or when the fibers lie 

along a meridian. By setting COSY = 1 in (26) it is possible 
to find C in terms of 'f(min) ' 
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(30) 

and c vs rf(min) is also plotted in figure 3. The relation- 

ship between 'f(min) and cos Y can be found from 

figure 3 and is shown in figure 5. 

The manner in which Y varies with radius for various 
COSY 

1 I rf =l is shown in figure 6 where Y is plotted as a func- 

tion of rfpf(min) * It can be seen that if some upper and 

lower limits are placed on Y , then the largest ratio of outer 
radius to inner radius is achieved when cosy 

I I 
rf=l is small, 

which corresponds to an outer radius not large compared to the 
focal distance,or to a "flat dish". 

The stress in the fibers can be found from (19) and (21) 
to be 

Substituting 
written as 

N IX 
cr,L q 

A An' l COSY 

(17) into (31) allows a normalized stress to be 

u 2 
ptif2 = c*cosy 

(31) 

(32) 

where pUJ"f2 is the stress that would exist in a hoop of radius 
f when it is spun about its axis of symmetry at the rate w . 
The normalized fiber stress as a function of rr is shown in 
figure 7 for various values of cosy 

I I 
rf=l . L It is of interest 
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to note that a/pw2f2 at any r f never differs very much from 

that of a hoop at rf , i.e. 

(33) 

The length of a fiber element is given by (21) and can be 
normalized by dividing it by the circumferential fiber spacing 
at the minimum radius to yield 

& rf -= 
AC0 2r f(min)S1nY 

(34) 

which is displayed in figure 8 for several values of cosy 

NETWORK OF THREE FAMILIES OF FIBERS 

Let the paraboloid of revolution now be formed with a net- 
work of three families of perfectly flexible fibers, one family 
being along parallel circles and the other two being symmetrically 
placed spiral sets. The fibers are jointed at the intersections 
to form triangles over the surface as shown in figure 9 and the 
sketch below. 

The same symbols are used as in the previous section, except 
that 

Ta = tension in parallel-circle fiber 

TC 
= tension in spiral fiber 

S m = spacing between parallel-circle fibers 
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Parallel- Parallel- 
circle fiber circle fiber 

)r )r 

S S m m 

Spiral fiber Spiral fiber 

b b 
* Ta * Ta 

- - 

Ne - Ne - 
4 4 

From the sketch it can be seen that: 

nr 
S = 

m n '0tanY 

A;tanY 1 
Ta T l sinY 

=--+ C 

Ne s S 
m m 

TC 
l cosY 

N = cp sm.tanY 

(35) 

(36) 

(37) 

(38) 
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where: 

A = cross-sectional area of spiral fibers 
c 

Aa 
= cross-sectional area of parallel-circle fibers 

At this point various possible restrictions can be chosen 
to more closely define the system. Two assumptions which make 
the analysis relatively simple are that the cross-sectional area 
of all the fibers are the same and constant and that the meshes 
are equilateral triangles, i.e., 

A =A =A C a 

Y = 300 

Then: 

S =s= fiiX 
m n' 

m" = G.&ii 
n r 

From (9), (38), and (39) 

F = finlTc*sincp = fi-nlAo .sinq C 

From (14) 

sincp 
I I 
rf=l 

=* 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

and (43) becomes 
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F = f 
3 
5en’Au c(rf=l) (45) 

Equations (41) and (42) can be solved for CT and u C a yielding: 

u 
2N@ 

=- 
C 3A (46) 

u ’ l N 
1 = =- 

a A A 8-?'c 

When (17), (18), (39), (40), and (45) are substituted into 
(46) and (47), DC and 0 are obtained as a 

Defining a dimensionless parameter Qf to be 

R pu,"f" = 
f uc r =l 

I I f 

allows 0 C and CJ a to be written in normalized form as 

u = 
C 

CJ 
a 

= 3pW2f2r2f - 

u 
C 

piw2f2 
= &* 

m 
1 1 rf 
2 

(47) 

(48) 

(49) 

(50) 

(51) 
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u a 
puFf2 = 3r: - 

The normalized parallel-circle-fiber stress UC PW"fZ 
/ 

normalized spiral-fiber stress c a P$ff" 
/ 

are shown in 

and 11, respectively. 

(52) 

and the 

figures 10 

It is of interest to note that C of (27) is related 
to fif by 

c COSY 
l 1 rf=l 

= R- 

RIM MASS 

It is quite apparent that the meridional force N 
cp 

must be 

supplied at the rim by some external system of forces. Such 
forces might be supplied by a system of tensioning fibers (assumed 
here to have negligible mass) in the form of a cone, in addition 
to radial forces supplied by a uniform distribution of mass along 
the rim. Such a system is shown in figure 12,where: 

% 
= total mass on rim 

% = mass loading per unit of length on rim 

a = angle between tensioning fibers and 
plane normal to axis of symmetry 

R = radius at rim 

NcpR 
= value of N at rim 

cp 
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Na 
= membrane force supplied by tensioning fibers 

N R 
= radial force per unit of length as supplied 

by rim mass 

By summing the axial forces 

Naosina F = 2rrr =N qR-sinrpR 

By summing the radial forces: 

Naecosa + N 
CPR 

' coscp R = NR =MI;flR 

By combining (53) and (54) the two following relationships 
are obtained: 

sincp +a 
N I R I 

R = N& sina 

MI; = 2nz2R2 (coWR + cota] 

Also the total mass s is: 

MR = 2nT = +R(cotqR + cota] 

(53) 

(54) 

(55) 

(56) 

(57) 

It is of interest to note that the above relationships still hold 
if the tensioning fibers are not massless or even if they are 
replaced by a membrane. It is only required that a then be 
measured at the rim. 
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CONCLUDING REMARKS 

It is possible to form a spinning paraboloid of revolution 
by a network of either two or three families of fibers. In the 
case of two families of fibers the placement of the fibers across 
the entire surface is determined by their orientation at a single 
point. In the case of three families of fibers, considerably 
more latitude of design is allowed, the only major restriction 
being that tension be maintained in each element. 

Astro Research Corporation 
Santa Barbara, California, December 16, 1966. 
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Figure 2. - Paraboloid Formed of Two Families 
of Fibers 
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Figure 9. - Overall View of Paraboloid of 
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